Error Estimates for Linear PDEs Solved by Wavelet Based Taylor-Galerkin Schemes

نویسندگان

  • Mani Mehra
  • B. V. Rathish Kumar
چکیده

In this paper, we develop a priori and a posteriori error estimates for wavelet-Taylor– Galerkin schemes introduced in Refs. 6 and 7 (particularly wavelet Taylor–Galerkin scheme based on Crank–Nicolson time stepping). We proceed in two steps. In the first step, we construct the priori estimates for the fully discrete problem. In the second step, we construct error indicators for posteriori estimates with respect to both time and space approximations in order to use adaptive time steps and wavelet adaptivity. The space error indicator is computed using the equivalent norm expressed in terms of wavelet coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Accurate Fast Wavelet-Taylor Galerkin Method for Partial Differential Equations

We introduce the concept of fast wavelet-Taylor Galerkin methods for the numerical solution of partial differential equations. In wavelet-Taylor Galerkin method discretization in time is performed before the wavelet based spatial approximation by introducing accurate generalizations of the standard Euler, and leap-frog time-stepping scheme with the help of Taylor series expansions in the time s...

متن کامل

Finite Element Approximations of Nonlinear Elastic Waves

In this paper we study finite element methods for a class of problems of nonlinear elastodynamics. We discretize the equations in space using Galerkin methods. For the temporal discretization, the construction of our schemes is based on rational approximations of cosx and ex . We analyze semidiscrete as well as secondand fourth-order accurate in time fully discrete methods for the approximation...

متن کامل

Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs

We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for...

متن کامل

On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise

We consider the semilinear stochastic heat equation perturbed by additive noise. After time-discretization by Euler’s method the equation is split into a linear stochastic equation and a non-linear random evolution equation. The linear stochastic equation is discretized in space by a non-adaptive wavelet-Galerkin method. This equation is solved first and its solution is substituted into the non...

متن کامل

On Wavelet-Galerkin Methods for Semilinear pabolic Equations with Additive Noise

We consider the semilinear stochastic heat equation perturbed by additive noise. After time-discretization by Euler’s method the equation is split into a linear stochastic equation and a non-linear random evolution equation. The linear stochastic equation is discretized in space by a non-adaptive wavelet-Galerkin method. This equation is solved first and its solution is substituted into the non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJWMIP

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2009